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The formal solution of Maxwell’s equations may be written as the exponential of a linear operator, the
Maxwellian, which generates the time evolution of the electromagnetic field. Given initial fields for a
system which conserves electromagnetic energy, the Maxwellian can be transformed to a symmetric
three-term recurrence relation or a symmetric tridiagonal matrix whose basis is a sequence of linearly in-
dependent fields. The power spectrum of this recurrence is the spectrum of a continued fraction, and the
stationary electromagnetic waves, whose superposition gives the initial fields, are linear combinations of
products of orthogonal polynomials in frequency with the basis fields. As an example, an initial field
consisting of a Gaussian pulse from an electric dipole leads to an analytic three-term recurrence with a
two-peaked power spectrum. The method can also be applied numerically to calculate the radiation pat-
terns of antennas and, when generalized, to systems where the electromagnetic field exchanges energy

with other degrees of freedom.

PACS number(s): 78.66.Sq

I. PROPAGATION OF LIGHT IN RANDOM MEDIA

The scattering of light by random media, for example,
random arrays of dielectric spheres, produces such in-
terference phenomena as coherent back scattering and
speckle patterns. Although these phenomena are gen-
erally understood in terms of the interference of multiply
scattered waves, the formation of structures such as opti-
cal dislocations [1-3] which depend on the vector nature
of the electromagnetic fields are not so well understood
because the solution of the vector wave equations in ran-
dom media is so much more complicated than scalar
wave equations such as the Schrodinger equation for elec-
trons in random potentials. See, for example, Ref. [4].

The purpose of this paper is to show how Maxwell’s
equations can be solved for the evolution of electromag-
netic waves from some initial field in three dimensions by
reducing them to a three-term recurrence relation which
is equivalent to scalar waves in one dimension. While
such a transformation might seem to require some ap-
proximation, it does not because the recurrence only de-
scribes the evolution of a single initial field which may be
resolved into a superposition of stationary waves, each
with a different frequency. A dispersion relation for sca-
lar waves in one dimension can be chosen to reproduce
this nondegenerate spectrum.

Using this transformation, Maxwell’s equations for any
medium which conserves the electromagnetic energy can
be solved either analytically, for simple media or small
perturbations from simple media, or numerically, for any
such medium. A summary of the method is that the evo-
lution of the field is expanded in powers of a Maxwellian
operator, the operator for the time derivative of the elec-
tromagnetic field, applied to the initial field. These
powers of the Maxwellian on the initial field generate a
sequence of linearly independent fields of which the
Maxwellian couples only successive powers. When the
fields are orthonormalized, the Maxwellian assumes the
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form of a symmetric three-term recurrence or a tridiago-
nal matrix. Once the Maxwellian is in tridiagonal form,
the power spectrum may be expressed as a continued
fraction, or the stationary waves may be expressed as
linear combinations of the sequence of fields. Other
quantities are similarly easy to calculate. In related
work, Ratowsky, Fleck, and Feit [5] used the Lanczos
method to solve the scalar Helmholtz equation.

The solution of the classical moment problem [6] is an
early application of this method of finding the spectrum
and other properties of a linear operator. It has been
rediscovered and revived in many forms including the
Lanczos method [7] for finding eigenfunctions of ma-
trices, and the recursion method [8] for calculating the
projected densities of states of the Schrodinger equation
for electrons in noncrystalline potentials. This method
has remarkable numerical stability for the calculation of
spectra and invariants, despite numerical instability of
other quantities [7,9,10].

The paper is organized into five further sections. The
first describes the formal solution of Maxwell’s equations
using the Maxwellian operator. In the next section, the
stationary solutions to the equations are expanded in the
fields which tridiagonalize the Maxwellian, and the power
spectrum is expanded as a continued fraction. In the
fourth section, the recursion method is illustrated by its
application to a Gaussian field to obtain its power spec-
trum. Section V contains a discussion of how the method
may be applied numerically if the fields can be expanded
in a basis such as the Gaussians in the example. In the
last section, there are a few comments on how the
method can be applied to systems with sources such as
radiating antennas and to other more general systems.

II. FORMAL SOLUTIONS OF MAXWELL’S EQUATIONS

Maxwell’s equations describe the evolution of the elec-
tromagnetic field in terms of the electric field E, the elec-
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tric displacement D, the magnetic field B, and the mag-
netic intensity H. In the absence of charge and current
densities, Maxwell’s equations in Sysfeme International
(SI) units are

D,=curlH , 2.1
B,=—curlE , (2.2)
divD =0, (2.3)
divB =0, (2.4)

where the subscript ¢ means the partial derivative with
respect to time, keeping position fixed. In addition to
Maxwell’s equations, there are relations between the
fields,

D=¢E (2.5)
and
B=uH , (2.6)

where € and u are, respectively, the permittivity and the
permeability of the medium. When charges and currents
are present, the current density must be subtracted from
curlH in the first equation and the charge density sub-
tracted from divD in the third equation. In general, the
relationship between D and B on the one hand and E and
H on the other is restricted only by causality and by the
fact that the electromagnetic energy density must be
non-negative.

The work which follows assumes for simplicity that
there are no free charge or current densities, that the per-
meability always takes it vacuum value, and that the per-
mittivity is isotropic and constant in time, but varies with
position to describe an inhomogeneous dielectric medi-
um. However, the methods presented here are general
enough to deal with charge and current densities as well
as any linear relationships between the fields which satis-
fy the physical constraints. The method may be applied
to time-dependent densities, and even time-dependent
media by techniques which are described in Sec. V1.

The above form of Maxwell’s equations emphasizes the
relation between the time and spacial derivatives of the
fields. This can be written more simply in the form of a
Maxwellian operator M which acts on a field F having six
components, the first three being E, the second three be-
ing H, and with all six varying in space and time. In this
form, Maxwell’s equations for F are

iF,=MF , (2.7)

where i is the positive square root of — 1, and, in terms of
E, and H, M is a 2X2 matrix operator whose diagonal
elements are zero and whose off-diagonal elements are
ie 'curl and —ip~ 'curl for the case under considera-
tion. If the permittivity or permeability are nonlocal,
then the above inverses are of their matrices or kernels.

Given a field F at time zero, then the formal solution to
Maxwell’s equations for a medium which is not explicitly
time dependent is

F(t)=exp{—iMt}F , (2.8)
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where the exponential of the Maxwellian is defined by its
power series and M"F grows no faster than n!. In what
follows, the goal is to calculate F(¢) efficiently and accu-
rately given an arbitrary dielectric medium. The calcula-
tion begins by expressing F (¢) in terms of the resolvent of
the Maxwellian, the Fourier transform of its exponential,

F(1)= fcexp( —iot)0—M) ' Fdo/(2m), (2.9

where the integral is around a contour C which encloses
all the angular velocities @ for which the Maxwellian has
solutions. Submatrices of this resolvent can be con-
veniently calculated.

III. REPRESENTATION OF THE MAXWELLIAN
AS A THREE-TERM RECURRENCE

When the Maxwellian is time independent, Maxwell’s
equations separate and their solutions can be written as
the real part of ¢ exp(—iwt) where w is the angular ve-
locity of the solution, and ¢, satisfies

o, =M, . 3.1

For an initial field vy, solution of this time-independent
equation proceeds by finding a sequence of bounded,
linearly independent fields v,v,,...,v,,... which
reduce the Maxwellian to a symmetric three-term re-
currence which in monic form is

My, =v, ,,+a,v, +bv, _; . (3.2)

The sense in which this recurrence is symmetric is that a,,
and b, are real so that the fields can be normalized,

v,=b,b,_, " bu, , (3.3)

to put the recurrence in the explicitly symmetric form,

Mu,=b, u, +ta,u,+b,u, _,, (3.4)

n

where the coefficient of u, _; in Mu, is the same as that
ofu, in Mu, _,.

The solutions ¥, of Eq. (3.1) can be expanded in either
sequence of fields with coefficients which are polynomials
in angular velocity,

Y,=> P,(0)u, , (3.5)

where the polynomials satisfy a three-term recurrence
similar to the fields,

oP,(w)=a,P,(®)+b, P, (0)+b,P, (w), (3.6)

with the initial condition that P_ () is zero and the
normalization condition that Py(w) is unity. Substituting
Eq. (3.5) into Eq. (3.1), using properties of the fields in
Eq. (3.4) and of the polynomials in Eq. (3.6) demonstrates
this directly.

Since the fields can be normalized so that the re-
currence is explicitly symmetric as in Eq. (3.4), these re-
normalized fields also serve as a basis in which the
Maxwellian is a symmetric tridiagonal matrix whose in-
variant values, the angular velocities of the stationary
fields, are real. Hence, the Maxwellian is Hermitian with
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respect to an inner product for which the sequence of re-
normalized fields is orthonormal. As a result, the nor-
malization of F(t) is conserved in this inner product,
which is equivalent to the property of Maxwell’s equa-
tions that the energy of the electromagnetic field is con-
served when there is no time dependence or dissipation in
the system.

The three-term recurrence distinguishes the initial field
v, as the first of the sequence and so provides particularly
simple expressions for this component as the field
evolves. In terms of R (w), the v,-v, element of the resol-
vent of the Maxwellian, the component of v, in F(?) is

vo(t)= [ _exp(—iot)R(w)dw/(2mi) , (3.7)
where R (w) may be written as a continued fraction
whose parameters are the coefficients of the three-term
recurrence,

(3.8)

and the contour C encloses the singularities of this con-
tinued fraction.

The sequence of fields vy,v,,05,...,0,, ... spans only
the electromagnetic fields which evolve from v,, which
may be expressed as a superposition of stationary waves,
each with a different frequency. The dispersion of these
waves is exactly that of the scalar waves propa-
gating on the one-dimensional chain described by the tri-
diagonalization of M. The choice of an initial field
reduces the Maxwellian to the one-dimensional form of a
three-term recurrence.

IV. A GAUSSIAN PULSE FROM A DIPOLE

As an example, consider the application of Maxwell’s
equations to the evolution of the fields arising from a sin-

My, ={—i(1/€)[1/(euc?®))(H /c*)exp[ —1r/(2¢})][ — (2 /cH)r X (r X c) /et +2r X (r X ¢)/c?—2(r? /c?)c], 0} ,

so that a; is zero by symmetry, and b% is 2/(euc?) leaving

vy={—i(1/€)[1/(euc?)]Hexp[ —r?/(2¢?)][ —(r?/c})r X (rXc)/c?—2(r? /c?)c—4c],0} .

In general, the (2n)th field is

v,, = {0,[1/(euc?®)]"Hexp[ —r?/(2¢})1(r? /c?)"t Xc/c?}

and the 2n + 1)th field is

Von+1={ —i(1/€)[1/(euc®)(H /c*)exp[ —1*/(2¢?)]
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gle pulse of a dipole in a homogeneous medium. A con-
venient form for the single pulse is as a Gaussian magnet-
ic intensity so that

vo={0,H exp[ —r?/(2¢?)]rXc/c?} , (4.1)

where the curly brackets indicate the combination of
electric and magnetic fields into a single vector, H is the
magnetic intensity of the initial field, r is the position vec-
tor, ¢ is a constant vector along the axis of the dipole, X
denotes the usual vector product in three dimensions, and
the square of a vector is its magnitude squared. This ini-
tial field v, consists of a superposition of equal incoming
and outgoing dipole waves whose electric vectors cancel
making the electric part of v, equal to zero.

Applying the Maxwellian to v, gives the next basis
field,

Mu, = { —i(1/€)(H /c*exp[ —r2/(2¢?)]

X[rX(rXec)/c*+2c],0} , (4.2)

which is symmetric under inversion through the axis of ¢
in contrast to v, which is antisymmetric. Since v, and
My, have different symmetries a is zero and

v ={—i(1/€)(H /c*)exp[ —1*/(2c?)]

X[rX(rXc)/c?*+2c],0} . 4.3)
The next step is to apply the Maxwellian to v,
Mv, ={0,[1/(euc?)]1H exp[ —r*/(2c?)]
X(r?/c?+5)rXc/c?} , (4.4)

so that b2 is 5/(euc?), and
v, ={0,[1/(euc?)1H exp[ —r?/(2c*)[(r* /c®)r X ¢} .
4.5)

Continuing the process,

(4.6)

4.7)

X {(—=r?/e?)"r X (rXc)/c*+2(—1?/cH)"c—4n(—r’/c?)" e

+8n(n —1)(—12/cH)" "2c— -+ +2(—2)"[n!/(n —m N ](—1%/c?)" " Me+ -0 +2(—2)"%},0} .

(4.9)
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The diagonal coefficients of the recurrence a, are all zero
because v, has a definite symmetry and each application
of the Maxwellian changes the symmetry of the field.
The odd, off-diagonal elements are

b2 ., =02n+5)/(euc?) , (4.10)
while the even, off-diagonal elements are
b2, =2n/(euc?) . 4.11)

The spectrum of the continued fraction associated with
the above recurrence gives the intensity of the wave of
each frequency present in the initial field, so this is the
power spectrum of the initial field. This spectrum is
shown in Fig. 1 where the units of angular velocity are
(euc?)™ 12, The spectrum is symmetric with respect to
the zero angular velocity because the initial field is real
and so contains equal components of the positive and
negative, complex angular velocities for each wave.

This power spectrum peaks at +2 in the above units,
just as the power spectrum of a similar scalar pulse. A
pulse described by a factor which is linear in displace-
ment from the origin times a factor which is a Gaussian
in displacement has a Fourier transform which is also a
linear factor in wave number times a Gaussian factor in
wave number. The power distribution is quadratic in
wave number, and for nondispersive waves (angular ve-
locity proportional to wave number) in three dimensions,
the power distribution in angular velocity has a quartic
factor multiplying the Gaussian which produces these
maxima.

V. NUMERICAL SOLUTION OF
MAXWELL’S EQUATIONS

The reduction of the Maxwellian to a three-term re-
currence can also be done numerically with the help of an
inner product for the fields, in which the Maxwellian is
Hermitian. For a time-independent Maxwellian with
nondissipative permeability and permittivity, the total
electromagnetic energy is a conserved quantity. In the

P(w) | 1

m/(guc2)1/2

FIG. 1. The power P(w) radiated with angular velocity w for
a Gaussian pulse from an electric dipole.
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case of a dielectric medium, this energy can be written as

W=1L1| (E-eE+H-uH)dQ , (5.1)
where the integral is over the volume of the entire sys-
tem, and the centerdot denotes the scalar product of vec-
tors.

Since the total electromagnetic energy W is non-
negative, there is a positive, Hermitian inner product of
fields # and v defined by

u*v=%f(uE-evE+uH-uvH)dQ , (5.2)
where the electric part of each field has the subscript E,
the magnetic part has the subscript H, and the u fields in
the integral are conjugated if complex. Conservation of
electromagnetic energy makes the Maxwellian Hermitian
with respect to this inner product. There are other inner
products which will serve just as well provided that the
Maxwellian remains Hermitian, and for systems with
nonlocal permittivity and permeability, the above expres-
sions can be generalized.

Suppose at time zero, the fields are u, then the Maxwel-
lian can be numerically tridiagonalized by the following
recursion:

ug=u/by , (5.3)
where
b(2)=u*u R (5.4)

to normalize u. The next step is to begin the recursion by
calculating

ap=uiMu, , (5.5)

b?=(Muy—ayug)*(Mug—agug) , (5.6)
and taking

u;=(Muy—aguy)/b; . (5.7)

In the general step of the recursion wug,uq,...,u,;

ag,ays-.-,a,_y; and by, by, ..., b, are known, with a,,
b, .1, and u, . to be determined. These quantities are

a,=u;Mu, , (5.8)
by =(Mu, —a,u, —byu, )*
X(Mu, —a,u,—b,u,_,), (5.9)
and
u, 1 =(Mu, —a,u,—b,u,_)/b, . (5.10)
The three-term recurrence is symmetric,
Mu,=b, U, +ta,u,+bu, _,, (5.11)

with the initial conditions that u_, is zero and u, is
given.

In order to carry out the above recursion numerically,
the fields {u,} must be expressed as linear combinations
of some basis fields in terms of which the Maxwellian is a
matrix with only a finite number of numerically
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significant elements in each row or column. Because the
electromagnetic field has an infinite number of degrees of
freedom, any matrix representation in terms of a basis
must also be of infinite dimension, so in order to multiply
numerically any element of the basis by the Maxwellian,
there must only be a finite number of significant terms in
the product. This is the property that the Maxwellian
matrix must be sparse. An important consequence of the
Maxwellian matrix being sparse is that the result of mul-
tiplying any finite combination of basis elements by the
Maxwellian has only a finite number of significant terms,
and so any finite power of the Maxwellian on any finite
combination of basis elements is finite. As a result, each
of the {u,} has only a finite number of significant terms
and the tridiagonalization of the Maxwellian can be done
to arbitrary accuracy on a finite computer.

One set of basis fields for which the Maxwellian is
sparse is the set of vector Gaussians multiplied by vector
polynomials used in the example, which can be augment-
ed by Gaussians with other centers. This basis set has the
advantage that, as shown above, it tridiagonalizes the free
space Maxwellian, just as Gaussians tridiagonalize the
free space Hamiltonian for electrons [11]. In terms of
such a set {®,}] of basis fields, each of which have an
electric and magnetic part, the matrix elements of the
Maxwellian M are

Ma,B:éf (D geurl®y g~ Dy curld®y 5)dQ ,

(5.12)

where the subscripts E and H refer, respectively, to the
electric and magnetic part of the basis fields, and the in-
tegral is over all space. Evaluation of these matrix ele-
ments involves only Gaussian integrals because the basis
fields are Gaussians multiplied by polynomials, vector
generalizations of isotropic oscillator wave functions, and
the curls of these fields are also generalized isotropic os-
cillator functions.

The Gaussian fields defined above are not necessarily
orthogonal with respect to the inner product, so the inner
products or overlaps between the basis fields make up a
matrix S whose elements are

Sep=1t[ (@ ,€@p p+ P Py dQ . (513
The matrix which produces the linear combination of
basis fields which result from applying the Maxwellian is
neither S nor M on its own, but S !M which is also
sparse and may be calculated by various methods [12].
By this means, the recursion is reduced to a set of opera-
tions in linear algebra for which there is a library of com-
puter programs [13].

Once calculated, the coefficients {a,} and {b,} of the
three-term recurrence can be used in the continued frac-
tion, Eq. (3.8), to evaluate the power spectrum of the elec-
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tromagnetic waves which evolve from u, or together with
the {u,} and Eq. (3.5) to expand the waves themselves.
The errors induced by finite precision arithmetic on these
algorithms are understood and discussed in Ref. [8] and
the references contained therein.

Briefly, the effect of finite precision is that the {u, } are
not orthogonal with respect to the chosen inner product.
This produces an error in the power spectrum of order
the precision, as if the initial field differed from the actual
one by an amount of order the root of the precision.
Waves calculated using Eq. (3.5) have errors of order the
root of the precision, provided that the coefficient of u
in Eq. (3.5) is no smaller, relative to the largest coefficient
in the expansion, than the root of the precision.

VI. ANTENNAS AND OTHER SYSTEMS

The previous sections have emphasized the solution of
Maxwell’s equations for nondissipative, time-independent
systems given some initial field. An important example
of such a system is an antenna driven by an oscillator to
which it is connected by a transmission line. The fields in
the transmission line can be expanded in some convenient
basis such as Gaussians, and the oscillator replaced by
the initial condition that the transmission line carry an
outward traveling wave. The zeroth diagonal element of
the Maxwellian resolvent for this system has a spectrum
which is the power reflected back down the transmission
line by the antenna at each frequency. The calculation of
the radiation pattern of the antenna is the same as calcu-
lating the transmittance of the antenna, a problem which
has been solved for quantum-mechanical waves in Ref.
[14]. Instead of just diagonal elements of the resolvent,
the transmittance also depends on off-diagonal elements.

The recursion method can also be extended to systems
with time dependence or dissipation provided that the
sources or sinks of energy can be incorporated with the
electromagnetic fields into a system which conserves its
total energy and for which the equations of motion are
linear. A simple example of such a system is an atom
coupled to the electromagnetic field. The combined sys-
tem conserves energy although its parts do not do so sep-
arately. The equations of motion include the states of the
atom as well as the fields, and the coupling between the
atomic transitions and the fields.
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